Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0613820200300080708
Journal of Life Science
2020 Volume.30 No. 8 p.708 ~ p.712
Deletion of the VPS26b-VPS29-VPS35 Retromer Complex Results in Learning Disabilities and Neurodegeneration
Kim E-Kyune

Abstract
Vacuolar protein sorting (VPS) 26b is a newly discovered member of the retromer complex; it is encoded by a single-copy gene located on mouse chromosome 9, and the complex has been reported as being composed of proteins VPS26, VPS29, and VPS35. We have previously shown that mice lacking VPS26b exhibited no significant body size or health issues. Although retromer components are widely expressed in mouse tissue, their roles have not yet been completely elucidated. The current study investigates whether the VPS26b-associated retromer complex can be used as a neurodegeneration model. Previously, we observed a significant reduction in VPS35 and VPS29 in the brain cells of in VPS26b-deficient mice as well as an absence of the VPS26b-VPS29-VPS35 retromer complex despite the normal presence of VPS26a-VPS29-VPS35. Recent studies have suggested that low levels of VPS35 can lead to Alzheimer¡¯s disease-like phenotypes including cognitive memory deficits. In this study, we successfully demonstrate an association between the absence of the VPS26b-VPS29-VPS35 retromer complex, reduced cell density in the CA3 region of the hippocampus, and learning disability in VPS26b knock-out mice. The results also indicate that the VPS26b-associated retromer complex affects neurodegenerative disorders and learning processes.
KEYWORD
Alzheimer¡¯s disease, learning deficits, neurodegeneration, vacuolar protein sorting-associated protein (VPS)
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)